MATH SOLVE

4 months ago

Q:
# Divide the following polynomials, Write answer in descending powers of y. (2y to the third power + 3y squared - 4y - 5) (y + 1)

Accepted Solution

A:

The first stwp for solving this expression is to multiply each term in the first parenthesis by each term in the second parenthesis (FOIL method).

2y³ × y + 2y³ + 3y² × y + 3y² - 4y × y - 4y - 5y - 5

Calculate the product of the first two numbers.

2[tex] y^{4} [/tex] + 2y³ + 3y² × y + 3y² - 4y × y - 4y - 5y - 5

Calculate the product of the second multiplication expression. (2y² × y)

2[tex] y^{4} [/tex] + 2y³ + 3y³ + 3y² - 4y × y - 4y - 5y - 5

Calculate the product of the final multiplication expression. (-4y × y)

2[tex] y^{4} [/tex] + 2y³ + 3y³ + 3y² -4y² - 4y - 5y - 5

Collect the like terms that contain y³.

2[tex] y^{4} [/tex] + 5y³ + 3y² -4y² - 4y - 5y - 5

Collect the like term that contain y².

2[tex] y^{4} [/tex] + 5y³ + -y² - 4y - 5y - 5

Lastly,, collect the like terms that have y.

2[tex] y^{4} [/tex] + 5y³ + -y² - 9y - 5

Since we cannot simplify this expression down any further,, the correct answer to your question is going to be 2[tex] y^{4} [/tex] + 5y³ + -y² - 9y - 5.

Let me know if you have any further questions.

:)

2y³ × y + 2y³ + 3y² × y + 3y² - 4y × y - 4y - 5y - 5

Calculate the product of the first two numbers.

2[tex] y^{4} [/tex] + 2y³ + 3y² × y + 3y² - 4y × y - 4y - 5y - 5

Calculate the product of the second multiplication expression. (2y² × y)

2[tex] y^{4} [/tex] + 2y³ + 3y³ + 3y² - 4y × y - 4y - 5y - 5

Calculate the product of the final multiplication expression. (-4y × y)

2[tex] y^{4} [/tex] + 2y³ + 3y³ + 3y² -4y² - 4y - 5y - 5

Collect the like terms that contain y³.

2[tex] y^{4} [/tex] + 5y³ + 3y² -4y² - 4y - 5y - 5

Collect the like term that contain y².

2[tex] y^{4} [/tex] + 5y³ + -y² - 4y - 5y - 5

Lastly,, collect the like terms that have y.

2[tex] y^{4} [/tex] + 5y³ + -y² - 9y - 5

Since we cannot simplify this expression down any further,, the correct answer to your question is going to be 2[tex] y^{4} [/tex] + 5y³ + -y² - 9y - 5.

Let me know if you have any further questions.

:)